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Abstract:  Transmission Control Protocol (TCP) is considered one of the most important protocol in the internet. 

An important mechanism in tcp is the congestion control mechanism which controls tcp sending rate & makes tcp 

react to cngesfion signals. Now a days,tcp may work in n/w with some links that have lossy nature(ex. Wireless 

network). Tcp treats all packet losses if they due to congestion. Tcp reduces sending rate aggressively  when there 

are transmission errors in an uncongested network. In this paper I present different solutions to overcome the 

performance degradation problem tcp faces when working over lossy  links. Many solutions have been proposed 

but I will concentrate on end to end solutions that require no help from the intermediate network. 
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1.       INTRODUCTION  
 

The performance of Transmission Control Protocol (TCP) has  greatly improved  since  1988,  when the congestion 

avoidance and control algorithms  were first introduced. TCP is currently the most widely used Internet transport protocol. 

In 2002, TCP traffic accounted for 95% of the IP network traffic. This was due to a variety of popular Internet 

applications and protocols. Web (HTTP), file transfer (FTP), and e-mail (SMTP) rely on TCP as the underlying transport 

protocol. Internet applications that rely on TCP today are likely to do so in the future. With a growing deployment of 

wireless networks, it is important to support these applications in both wireline and wireless environments. Hence, 

wireless networks will also require good TCP performance. 

Wireless networks have different characteristics compared to wireline networks. TCP, which was carefully designed and 

tuned to perform well in wireline networks, suffers performance degradation when deployed in wireless networks. 

2.       TRANSMISSION CONTROL PROTOCOL 

TCP is a connection-oriented transport layer protocol. It provides reliable byte stream services for data applications. Its 

key features include reliability, flow control, connection management, and congestion control. Major TCP versions are 

Tahoe, Reno, and New Reno. They differ mainly in their congestion control algorithms. Tahoe, the original version of 

TCP, employs three congestion control algorithms: slow start, congestion avoidance, and fast retransmit. TCP Reno 

extends Tahoe with a fast recovery mechanism. NewReno, the latest major version of TCP, modifies TCP Reno’s fast 

recovery algorithm and addresses the issue of partial acknowledgements (ACKs). 

Differences between the characteristics of wireline and wireless networks have significant impact on TCP performance. 

TCP was designed and optimized to perform well in wireline networks. Wireless links, with considerable packet losses 

due to link errors, delay variations, and long sudden delays, violate TCP’s essential design assumptions. Improving TCP 

performance in wireless networks has been an ongoing research activity since the mid 90’s. Most improvements dealt 

with TCP’s reaction to high bit error rate (BER) and TCP performance degradation due to delay and delay variation in 

wireless links. Performance of TCP’s congestion control algorithms particularly deteriorates when TCP is deployed in 
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mixed wireline/wireless networks. We describe here TCP’s timer and window management, congestion control 

algorithms, and round-trip time (RTT) estimation. 

A.  TCP Windows 

TCP maintains two windows to perform congestion control and avoidance: the receiver’s advertised window (rwnd) and 

the congestion window (cwnd). They define the maximum number of bytes the receiver may receive and the sender may 

send, respectively. The number of bytes that may be sent to the network is the minimum of the two. With rwnd 

sufficiently large, the larger the cwnd, the more data TCP can send, resulting in larger TCP throughput. 

The growth of the cwnd is ACK paced: with every segment that TCP sends, the receiver issues an ACK to acknowledge 

the receipt of the data. The receipt of the ACKs increases the cwnd and enables the sender to send more data. 

B.  TCP Congestion Control Algorithms 

TCP packets may be lost due to link errors or network congestion. Since losses due to link errors in wireline networks are 

rare, TCP deals only with packet loss due to network congestion. Hence, packet loss always implies network congestion. 

TCP congestion avoidance and control  were first introduced when Internet experienced its first series of “congestion 

collapses.” 

TCP detects network congestion via duplicate ACKs and timeouts. Each byte of the transmitted data is assigned a unique 

sequence number (seqno). When a data packet loss occurs, TCP receiver issues a duplicate ACK for any out-of-sequence 

data packet received. Upon receiving a predefined number of consecutive duplicate ACKs, TCP assumes that a packet is 

lost. 

In most TCP implementations, the threshold is set to three (known as three duplicate ACKs). Note, however, that when 

cwnd < 4 or the network is temporarily disconnected, the number of duplicate ACKs is less than three, and thus 

insufficient to trigger three duplicate ACKs. TCP handles this situation by keeping a timer called Retransmission Timeout 

(RTO). When the timer expires, it assumes packet loss [1], which triggers congestion control. TCP congestion control 

mechanism includes : 

• increasing cwnd by one segment size per RTT and halving cwnd for every window experiencing a packet loss 

(Additive Increase Multiplicative Decrease, AIMD)  

 

• Retransmission Timeout (RTO), including exponential back-off when timeout occurs  

 

• slow start mechanism for initial probing of the available bandwidth  

 

• ACK clocking (self-clocking) the arrival of ACKs at the sender, used to trigger transmission of new data.  

TCP Reno congestion control algorithms are shown in Fig 

 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. TCP congestion control algorithms. 
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Slow Start: At the onset of a TCP connection, TCP employs the slow start mechanism to probe the network capacity. 

Slow start is also employed after a packet loss is detected by the RTO mechanism. When the transmission starts, the 

sender’s cwnd is set to the initial window (IW) size. Congestion window cwnd is increased by at most SMSS (sender 

maximum segment size) bytes for each ACK received that acknowledges new data. The slow start threshold (ssthresh) 

may be arbitrarily high and could be reduced when congestion occurs. When congestion is detected by the RTO 

mechanism, cwnd is set to IW and ssthresh is set to 0.5×cwnd. In both situations, slow start is used as long as cwnd < 

ssthresh . Slow start ends when cwnd > ssthresh or when congestion is detected. When cwnd = ssthresh, the sender may 

use either slow start or congestion avoidance. 

Congestion Avoidance: If cwnd > ssthresh, congestion avoidance is employed to probe the network capacity more 

slowly than during the slow start. Congestion window cwnd is incremented by one full-size segment per RTT. In most 

cases, TCP operates in the congestion avoidance phase. Congestion avoidance ends only when congestion is detected. 

TCP moves from congestion avoidance to fast retransmit. The incoming segments are considered out-of-order by the 

receiver when a packet loss occurs. For any out-of-order packet received, the receiver immediately sends a duplicate ACK 

acknowledging the next expected seqno. After receiving three duplicate ACKs, the sender retransmits what appears to be 

the lost packet without waiting for the retransmission timer to expire. It uses the sequence number contained in the 

duplicate ACKs. Along with the retransmission, TCP also sets ssthresh to 

 

where FlightSize is the size of the outstanding data in the network. 

Fast Recovery: Fast recovery takes place immediately after the sender performs fast retransmit. Here, a new ACK is 

defined as the ACK acknowledging the sequence number beyond the lost segment. TCP first inflates cwnd to ssthresh 

+3.SMSS . This reflects the three segments that have left the network (three duplicate ACKs would require three packets 

to leave the network). For every additional duplicate ACK received, the sender increments cwnd by SMSS to reflect that 

an additional segment has left the network. This new cwnd may also allow the sender to transmit a new segment. When a 

new ACK is received, the sender sets cwnd to ssthresh to deflate the cwnd, and the congestion avoidance phase continues. 

C.  Karn’s algorithm: RTT estimation and RTO 

After a segment is transmitted, an ACK is expected by the sender. If the RTO timer expires before the ACK is received, 

the segment is retransmitted. This resynchronizes the transmission in case the segment is lost. Therefore, if the calculated 

RTO is too large, unnecessary time will be spent waiting for the timer to expire. Thus, it will cause TCP performance 

degradation [1]. If the calculated RTO is too small, the timer may expire prematurely and cause unnecessary 

retransmissions. 

RTT is estimated using Karn’s algorithm. RTO is calculated based on the estimated RTT and the RTT deviation. TCP 

measures the round-trip time of the ACKs for data segments and this interval is called sample RTT. The moving average 

of RTT, called a smoothed RTT (srtt), and the mean deviation (rttvar) are calculated as: 

srtt = (1 – g )×srtt + g×sampleRTT rttvar = (1 – h )×rttvar – h×|sampleRTT – srtt|, 

with recommended parameter values: 

g = 0.125 and h = 0.25. RTO is calculated as: 

RTO = srtt + 4× rttvar. 
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3.       CHARACTERISTICS OF WIRELESS NETWORKS 

Mobile connectivity provided by wireless networks allows users to access information anytime and anywhere. The growth 

of cellular telephone systems is accompanied with a growing number of wireless-enabled laptops and personal digital 

assistants (PDAs). Cellular networks evolved from 1G analog systems to 2G systems (GSM and PDC), 2.5G systems 

(GPRS and PDC-P), and 3G systems (Wideband CDMA and cdma2000). During the past decade, the quality of wireless 

links has been improved in terms of BER and link bandwidth.  

Wireless networks still exhibit the following characteristics: 

A.  High bit error rate (BER) 

Wireless networks experience random losses. BER in wireless networks is significantly higher than in wireline networks. 

Packet error rates range from 1% in microcell wireless networks up to 10% in macrocell networks. Even with optimized 

link layer retransmission algorithms in 3G networks, packet error rate remains ~1%. 

B.  Long and varying delay 

Wireless links have a large latency. Typical RTTs in 2.5G and 3G networks vary from a few hundred milliseconds to one 

second. Furthermore, they are likely to experience sudden delay changes (delay spikes) greatly exceeding the typical 

RTT. (Delay spike is defined as a sudden increase in the latency of a communication path) Wireless WANs have a typical 

latency of up to 1 s. These delay changes may cause spurious TCP timeouts. Wireless links experience delay changes due 

to link recovery, temporary disconnections, traffic priority, and link/MAC layer protocols. 

C.  Bandwidth 

Bandwidth of cellular networks increased as they evolved from 1G analog systems to 2G systems (10–20 kbps for uplink 

and downlink), to 2.5G (10–20 kbps uplink and 10–40 kbps downlink), and 3G systems (up to 64 kbps uplink and 384 

kbps downlink) . Data rates vary due to mobility and the interference from other users . Mobile users share the bandwidth 

within a cell. As users move among cells, they affect the bandwidth available to other users. Furthermore, a user may 

move to another cell with higher or lower bandwidth. These factors cause variable wireless link data rates. TCP was 

designed to handle the changes in bandwidth with its self-clocking scheme. However, a sudden increase in RTT could still 

cause spurious timeouts. 

D.  Path asymmetry 

Cellular 2.5G and 3G systems employ asymmetric uplink and downlink data rates. 

4.      IMPROVING TCP PERFORMANCE 

A number of solutions have been proposed to solve the problem of non-congestion related packet losses misinterpreted by 

TCP [10] – [12] and to reduce the impact of delays and delay variations on TCP performance in wireless networks. 

A.  Wireless Link Errors 

The main characteristic of a wireless network is the high BER on its links. It violates the fundamental assumption of TCP 

that packet loss caused by link error is negligible (<< 1%) and that packet loss is caused only by network congestion. 

High BER in wireless networks causes packet loss regardless of network congestion. The main cause for TCP's 

performance degradation in a mixed wireless/wireline environment is its inability to detect the origin of the packet loss. 

When a packet loss is detected, TCP employs congestion control algorithms to reduce the transmission rate. A single 

packet loss on the link will cause duplicate ACKs and cwnd to be reduced by half according to the fast retransmit and fast 

recovery algorithms. TCP resolves the congestion in the network by lowering its transmission rate. However, lowering the 

transmission rate will degrade TCP performance if the packet loss is not caused by congestion. 

One approach to improving TCP performance is to reduce the adverse effect of wireless link errors. Proposed solutions 
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either hide the wireless link error from the TCP sender or make the sender aware of the causes of segment losses. The first 

approach resolves the error within the wireless domain without the TCP sender being aware of the error. These solutions 

often modify the base station and/or the mobile host. If the link error is well shielded from the sender, modifying the 

sender is not necessary. The examples are I-TCP, M-TCP, and Snoop , . The second approach explicitly makes the sender 

aware of the wireless link error by handling differently segment losses caused by wireless link errors and losses due to 

network congestion. This approach requires the base station to send explicit congestion messages to the sender or a 

mechanism to detect the causes of loss at the sender. An example is TCP Westwood. 

Based on the design principles, the solutions may also be categorized as: split connection (I-TCP), link layer 

retransmission (Snoop), and end-to-end (TCP Westwood , WTCP). 

B.  Wireless Link Delays 

Wireless networks have larger latency and delay variations than wireline networks. Long sudden delays during data 

transfers are common in GPRS wireless WANs. Furthermore, experimental  and analytical  data indicate that mobility 

increases packet delay and delay variation and degrades the throughput of TCP connections in wireless environments. 

Three major adverse effects are: spurious fast retransmit, spurious timeouts, and ACK compression. 

Spurious timeout: It may occur on links with long sudden delays. With its RTO timer, TCP is designed to handle even 

large gradual changes in delays. Nevertheless, TCP cannot handle well long sudden delays because it is unable to adjust 

its RTO fast enough. When the RTO timer expires, TCP assumes that the outstanding packets are lost and triggers the 

congestion control. 

Spurious timeout is illustrated in Fig. 3. The three arrows show three critical events. The sudden long delay on the link 

occurs at 5 s. The first arrow indicates the moment when the TCP sender’s RTO timer expires. TCP sender assumes that 

the previously sent packets are lost. The cwnd is reduced to the initial window (two segments). TCP then retransmits the 

first two unacknowledged segments. At 11 s, the link delay terminates (marked by the second arrow). The sender receives 

the first new ACK and starts recovering from timeouts by entering the slow start phase. All the unacknowledged segments 

are to be retransmitted. Since some ACKs on the wireless link have also been delayed, they accumulate and arrive 

together at the sender when the link recovers. This causes a burst of data segments to be sent. This is known as ACK 

compression. The retransmission unnecessarily utilizes the scarce wireless bandwidth and may potentially increase the 

recovery time. 

The unnecessary retransmission of segments may introduce an additional spurious fast retransmit. At 11.97 s, the 

retransmitted segments arrive at the receiver. Since previously transmitted segments have been received after the link 

recovered, TCP receiver generates a duplicate ACK for every out-of-order segment. These duplicate ACKs (ACK 136) 

are shown between 11.97 s and 12.54 s. When the number of duplicate ACKs exceeds the duplicate ACK threshold, 

another spurious fast retransmit is triggered. This further worsens the situation. A gap appears after 12.54 s (graph labeled 

seqno) immediately after ACK 137 is received. During the fast retransmit, for every duplicate ACK received, the sender 

artificially inflates the cwnd by one segment and, if the cwnd permits, transmits the next segment. (The change in cwnd is 

not shown. It can be seen from the seqno showing new segments that are sent with ACKs received.) When the new ACK 

137 is 

 

 

 

 

 

 

Fig. 2. Spurious timeout. 

Eifel algorithm was proposed to enhance TCP’s adaptation to link delays in wireless networks. Both spurious 
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timeout and spurious fast retransmit are caused by TCP’s retransmission ambiguity, which occurs when an ACK arrives 

for a segment that has been retransmitted. Hence, there is no indication which transmission is being acknowledged. Eifel 

algorithm is an end-to-end solution, which requires modifying only the TCP sender. It first eliminates the retransmission 

ambiguity by using additional information in the ACKs. Then, it restores the payload and resumes transmission with the 

next unsent segment. Timestamp option is used to provide the additional information to identify the segment that 

triggered the duplicate ACK. Timestamp clock is stored in the header of every outgoing segment and echoed back with its 

corresponding ACK. The sender also keeps track of the timestamp of the first retransmission. The received ACK can be 

identified by comparing the timestamp stored in the sender with the timestamp in the received ACK. If the ACK was 

triggered by the original segment, spurious retransmission has occurred. The sender then restores the cwnd and possibly 

RTO. Instead of retransmitting the unacknowledged segments, the next unsent segment is transmitted. 

Although Eifel algorithm effectively reduces the impact of spurious timeouts and spurious fast retransmits by eliminating 

the retransmission ambiguity, it has two major drawbacks: it requires modification of all TCP clients in the wireline 

domain and requires that both the sender and the receiver have the 12-byte TCP timestamp option enabled in every 

segment and the corresponding ACKs. Furthermore, its performance in the cases of high link errors is questionable. 

5.     CONCLUSION 

In this paper, we proposed packet control filters to improve TCP performance in wireless networks with delay variations 

and long sudden delays. TCP connections were simulated in a mixed wireline and wireless network using the ns-2 

simulator. The simulation results show that the proposed algorithms reduce spurious fast retransmit and spurious timeouts 

in TCP. They improve TCP’s throughput, goodput, and bandwidth consumption. 

In cases of long sudden delays, TCP performance is also improved, depending on the path characteristics. Packet control 

filters can be conveniently deployed at the intermediate routers to control the transmission of TCP segments and ACKs. 

Future improvements may include more accurate delay generators and multi-connection simulation scenarios while using 

genuine wireless traffic traces for performance evaluations. 
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